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1. INTRODUCTION

2. In the last few years considerable interest has been shown in the problems

posed by the analysis of images corrupted by random noise. The reconstruction

of such images leads to special difficulties as it is an ill-posed problem ( in the

sense described by O'Sullivan, 1986 ). Typically the reconstruction of an array

of pixels will have as many parameters as observations. A number of tech-

niques have been proposed which solve ill-posed problems by restricting the

class of admissible solutions,see Marroquin,Mitter & Poggio (1987). This is

achieved by introducing a priori knowledge about admissible solutions.

* Much interest currently centres on techniques which incorporate knowledge

about the underlying image using Bayesian methodology, See Geman & Geman

(1984) ; Kashyap & Lapsa (1984). These techniques assume that the underly-

* ing scene can be adequately described as a realisation from a prescribed Mar-

kov random field. Motivated by this approach Besag (1986) introduced a tech-

nique known as ITERATED CONDITIONAL MODES (ICM). This iterative

* procedure incorporates knowledge about the underlying scene by the choice of

a 'neighbourhood system' ,weight function and smoothing parameter. Broadly
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speaking this method exploits the tendency of adjacent pixels to have the same

colour. A similar approach based on spatial iuto regression is described in

Woods,Dravida & Mediavilla (1987). -

In this paper we use simulation to evaluate the performance of ICM in

reconstructing binary ( black-white ) images. The reconstruction of binary i-

ages is of considerable practical importance as many problems in object recog-

nition and manipulation fall into this category. For simplicity we suppose that

the underlying scene can be partitioned into an array of pixels ( picture ele-

ments ) which are uniquely coloured black or white. At each pixel we observe

a signal which depends on its colour. We consider the case where each signal

is additively corrupted by independent normally distributed noise. These are

highly unrealistic assumptions as they ignore the problems associated with

mixed pixels, signal spread etc. However we believe that the study of ICM in

,0: this simplified setting will give valuable insight into its behaviour in more com-

plex situations.

In section 2 we describe the basic ICM algorithm and recall some basic

facts about Markov random fields. The synthetic scenes used in this study are

described in section 3. In section 4 we examine the influence of the neighbour-

hood system and weight function on the quality of our reconstructions. The

choice of smoothing parameter is discussed in section 5. We are particularly in-

terested in identifying properties of the underlying scene which influence the

value given to 03 (the smoothing parameter). Some distributional properties of ,T"

* ICM reconstructions are discussed in section 6. The numerical performance of

I.-" the basic ICM algorithm is discussed in section 7. We describe several

modifications of the basic algorithm which enhance its efficiency. Our findings

* are summarised in section 8.

The problem of restoring corrupted images has a long history in the image

processing literature, where a number of techniques of varying sophistication D

have been suggested, see Bovik,Huang & Munson (1987) or Rosenfeld & Kak

(1982). A comparison of ICM with the multitude of competing techniques is
'!tb Codes
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not attempted in this paper.

2. THE ICM ALGORITHM AND MARKOV RANDOM FIELDS

Let W be a rectangular window in the plane which is partitioned into an

'' (m x n) array of rectangular pixels of equal size. We assume that each pixel

can be uniquely coloured. The available colours are labelled (1,2,...,c). In this

,a, paper we restrict attention to scenes with two colours which we call black and

white. The colour of the (i ,j)h pixel is denoted by xij. We refer to (xij) as the

true or underlying scene. Suppose we observe an array of signals (yij) generat-

Yij = -(xij) + Eij, (2.1)

where (E/j) are independent and identically distributed random variables and

* ji(.) is a function of xij only. The object of image analysis is to estimate the

true or underlying scene (x/j) from (yij). In this paper we consider real-valued

signals only. Models of this form are not canonical in the study of corrupted

images and the reader is referred to Besag (1986) for a discussion of alternative

-1 models.

At first sight the natural way of estimating (xij) is by maximum likelihood.

In this approach we find (xij) which maximises

mn n
1( (yj) I (xij) ) = 1f (y 1 xij). (22)

i=1j=1

* where f (yij I xij) is the fully specified density function of Yij conditional on xij.

The estimates produced by this approach are usually unsatisfactory as (2.1) has

as many parameters (xij) as observations. To improve the situation Geman &

* Geman (1984) and Besag (1986) introduce information about (xii) into the

estimating procedure. This is achieved by regarding (xij) as a realisation from

a Markov random field ( MRF). A detailed account of the salient features of

MRF's can be found in Geman & Geman (1984) ; Besag (1974,1986) or

-; Suomela (1976). We briefly outline the main properties of MRF's relevant to

'



the discussions in this paper.

For each pixel (ij) we associate a set of pixels F(ij ) , not including (ij)

called the neighbourhood of (ij). The collection of sets (F(ij)) is called a

neighbourhood system and satisfies the condition

" ~(p ,q )F F(jj.) , (i ,j) F (p,q).

Then (xij) is a MRF if

(1) P(xij I(xt,,,pi,qj)) = P(x IXpq,(p,q) E F(i j)),

* (2) P((xj)) > 0,

where P((xij)) is the probability associated with the realisation (xij). Condi-

tions 1 and 2 impose severe restrictions on P (.). Valid forms of P (.) are given

by the Hammersley-Clifford Theorem, see Besag (1974) or Suomela (1976).

We follow Geman & Geman (1984) and adopt a Bayesian approach where

we estimate (xij) from its posterior distribution

Il((Yiji)lI(xiy))e ((xiy)). (2.3)

A plausible estimate of (x/j) is the value of (xij) which maximises (2.3). This is

the MAP estimate of (xij). Geman & Geman (1984) use simulated annealing to

maximise (2.3). Van Laarhoven & Aaris (1987) give a comprehensive

description of simulated annealing and its application to image analysis. Note

that Greig,Porteous and Seheult, in the discussion of Besag (1986) show that

the MAP estimate of a binary scene can be calculated exactly. It is not known

whether the MAP estimator has any desirable properties in this context.

Besag (1986) introduces an alternative estimator of (xij) known as

ITERATED CONDITIONAL MODES (ICM). This algorithm converges to a

local maximum of (2.3). Let (2.ij) be the current estimate of (xij). For each

pixel we find the value of xij which maximises

f (Yij I xij)P (xij I ( ij)), (2.4)

where P (xij I (.fij)) depends on the neighbours of (ij) only. Consider an exam-

,, I



ple. Let (xij) be a binary scene and (rij) an array of independent normally dis-

tributed random variables with zero mean and variance Y2. We represent our

knowledge of (xij) by a MRF with neighbourhood system

(F()=((i -1,1),(i +lj ),(i j-1),(i j+1))) and conditional probabilities

= exp1 3ui (k ))
P(xij=k I(xqpi,qoj)) exp( puij(1)) , k=0,1 (2.5)

exp(ouj (0)) + exp(13uij(1)),kO1, (25

. where the weight function Uij (k) is the number of neighbours of xij with colour

,1, k. The value of xij which maximises (2.4) minimises

(2o2)- l (yij - g.(xij))2 _- j (xij), (2.6)

where aij (xij) is the number of neighbours of (i ,j) which have colour xij

under the current estimate (). We call 10 the smoothing parameter. The exten-

sion of (2.6) to non-gaussian noise is immediate.

* Notice that (2.6) is in the form of a penalised likelihood and may be inter-

preted in this way without recourse to Bayesian arguments. Note that ICM and

MAP are not equivalent for most scenes. Typically smaller values of 13 (rela-

tive to 1CM) are required for MAP, see Greig,Porteous and Seheult,in the dis-

cussion of Besag (1986). The relationship between techniques like ICM and

other regularisation procedures is discussed in Titterington (1985).

3. DESCRIPTION OF THE SIMULATION STUDY
A..

Seven scenes of varying complexity were constructed by partitioning the

unit square into 104 square pixels of equal size. The colour of each pixel was

assigned to the colour of its mid-point. In this study we use black and white

scenes only.

To identify properties of 1CM more easily we restrict attention to simple

synthetic scenes which cover a small alphabet of forms rather than use naturally

occurring images. Five simple geometric scenes are displayed in figures 1 to 5.
The remaining scenes, MRF2 and MRF3 ( fieures 6 and 7 ) a'e realisations
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from a Markov random field with prescribed number of black pixels (approx

50%). MRF2 and MRF3 were constructed using the algorithm described in

Cross & Jain (1983). Notice that we are sampling from the conditional distribu-

tion of the prescribed MRF. We believe that realisations constructed in this way

capture much of the local structure of the unconditional model. In the next sec-

.4.. tion we describe three Markov random fields, ( Models 1,JI and III) which are

commonly used in this context. MRF2 is drawn from Model II with 03=0.5 and

MRF3 from Model III with 3=0.75.

We construct an array of signals (yii) using (2.1) with

g(black)=1 , g(white)=O and (eij) an array of independent normally distributed

random variables with zero mean and variance a2. The maximum likelihood

reconstruction is calculated and used as the initial state for the ICM algorithm.

This iterative procedure is terminated after twelve iterations. Typically conver-

gence occurs after six iterations. This process is repeated fifteen times for each

combination of parameter and underlying model. The efficiency of this algo-

rithm is discussed in section 7.

Many criteria can be used to evaluate reconstructions. Essentially its choice

depends on the image characteristics of greatest interest. In this paper we use

the number of misclassified pixels as an appropriate measure. The suitability of

this criteria has been the subject of much recent debate, see the discussion of
.4,..-

Besag (1986). We point out the limitations of this criteria where appropri-

ate. Figs 1-7

* here

4. THE CHOICE OF MODEL.

In this section we examine the effect of choosing three different weight func-

tions in (2.6). The choice of 13 is discussed in section 5. In a Bayesian frame-

0 work we are modelling our knowledge of the uncorrupted scene by a MRF with

prescribed structure. Cross & Jain (1983) show that simple MRF's can



generate a wide variety of binary scenes. The problem of choosing suitable

MRF's to model specific scenes is not well understood,see Kashyap &

Chelappa (1983) , Enting & Welberry (1978) and Pickard (1987). The last two

authors discuss parameter estimation for Markov random fields. An additional

complication arrises when our knowledge about the underlying scene is impre-

cise or difficult to model by a MRF. The success of this approach rests on the

assumption that only certain modest properties of our 'prior' are important.

Some tentative observations on the robustness of ICM reconstruction to model

specification are given in sections 4 and 5.

In this section we use three different MRF's to describe our knowledge

about the scenes presented in figs 1 to 7. We examine the misclassification rate

achieved by ICM using each model and several values of the parameter J3. The

models used are as follows:

MODEL I: A first order neighbourhood.

F(5j) = ((i-l,j),(i+l,j),(ij+l),(i,j-1)).

P(x1 1-k IF,' = exp(puij (k)) k =0,1. (4.1)
P F(i)) = exp(3 uj (0)) + exp(puij (1))

where

Upq (k) = 1 , when (p,q)EF(iJ) and x,= k, (4.2)

and zero otherwise.

MODEL II: A second order neighbourhood.

2 - (~U~i ,),(ij +l),(i+ 1,j),i ,j- ))

* P(xij=k IF(i,j)) is given by (4.1) and (4.2).

TT
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MODEL III : As for II with down weighted diagonals. F(iy ) as for the

previous model and P(xij=k IF(ij)) given by (4.1) with

upq(k)= 1 (p,q)-((i+l,j),(i-lj),(i j+l),(i,j-1)) and Xpq =k.

Upq(k) = 2-  , (p,q)E((i-l,j+l),(i+lj-1),(i+l,j+l),(i-,Ij-1)) and Xpq = k.

upq (k) = 0 otherwise. (4.3)

There are conflicting opinions as to whether models should be modified for pix-

els adjacent to the window,see Ripley (1984). In this study we use the

unmodified models 1,11 and III. The effects of modification appear small rela-

tive to the standard errors encountered in this study. Cross & Jain (1983) show

that models like 1,11 and III can be used to construct a wide variety of binary

scenes.

* TABLE I

Comparison of models I, II and III
Smallest average percentage of misclassified pixels

J3 taking values in (0.25,0.5,0.75,1.0,1.25,1.5) for Models II and III
3 taking values in (0.5,1.0,1.5,2.0,2.5,3.0) for Model I

The standard error of this estimate is given in brackets
2 = 0.5 ML 15.87

Model
Picture I II I1
BCIR 2.24 (0.07) 0.55 (0.04) 0.60 (0.04)

CROSS 2.66 (0.05) 1.00 (0.07) 0.98 (0.06)
TWO 2.40 (0.09) 1.11 (0.05) 0.97 (0.06)

MANY 3.94 (0.10) 2.41 (0.07) 2.27 (0.08)
VMANY 8.40 (0.13) 7.11 (0.10) 7.24 (0.10)

MRF3 6.81 (0.07) 4.92 (0.09) 4.98 (0.10)
MRF2 9.50 (0.14) 7.85 (0.09) 7.98 (0.09)

$

( 2 = 1.0 ML 30.85
Model

Picture I II Ill
BCIR 6.33 (0.16) 1.32 (0.07) 1.32 (0.05)

* CROSS 6.85 (0.22) 2.07 (0.12) 2.04 (0.10)
TWO 6.88 (0.13) 2.55 (0.08) 2.41 (0.08)

MANY 8.84 (0.15) 4.52 (0.16) 4.55 (0.12)
VMANY 15.11 (0.22) 13.44 (0.13) 12.92 (0.17)

MRF3 12.13 (0.16) 8.16 (0.19) 8.09 (0.17)
MRF2 14.92 (0.20) 11.40 (0.23) 11.34 (0.22)

•.
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Each scene described in figs 1 to 7 is reconstructed using models 1,11 and

III with various values of 02 and 13. For models II and III we find the value of

13 in the set (0.25,0.5,0.75,1.0,1.25,1.50) which gives the smallest average

misclassification rate. For model I we consider values of 13 in the set

(0.5,1.0,1.5,2.0,2.5,3.0). We choose different values of 13 for model I as there

is strong empirical evidence that the 'optimal' value of 13 lies in this range for

the scenes considered. In Table I we display the smallest average

misclassification rate for a2 = 0.5 and 1.0. Similar results were obtained using

different values of a2. Notice that ICM is superior to the ML estimate for all

scenes. It is readily apparent that model I is vastly inferior to II and III for all

scenes considered. Model Ill is marginally superior to model II in the majority

I.1\ of cases (9 from 14). In their study of edge penalties Brown and Silverman

(1987) present an argument which supports the use of model III in preference

to Model II for the majority of scenes. Recall that MRF2 and MRF3 are reali-

sations from a Markov random field with a fixed number of black pixels. Using

the 'correct' model for these scenes appears to have little effect on the quality

of the reconstruction.

As the 'optimal' 13 will usually be unknown we examine the average

misclassification rates for model II and III for several values of 13. The average

percentage of misclassified pixels is presented in Tables II to VII for various

values of 13.

In Tables I and III we display the average percentage of misclassified pix-

* els using models II and III for various values of 13 and o2=0.5. Similar results

were obtained for other values of a2. There is strong evidence to suggest that

the 'optimal' value of 13 using model III is larger than the corresponding value

• for model II. In figure 15 we compare the average percentage of misclassified

pixels when MRF3 is reconstructed using models II and III (c2 -0.5). We plot

the average percentage of misclassified pixels using model II against 13. For

* -+Model III we plot the corresponding percentage against (1/1.17)13. From this

figure we see that a useful first approximation is to multiply the value of 13 used



with model II by 1.17 when using model III. This ensures that the second term

in (2.6) has the same value for both models when t~ij(Xij)=8.

TABLE II

Average percentage of misclassified pixels using Model II
Standard errors in brackets

Optimal reconstruction is bold faced

G2 = 0.5

13 BCIR CROSS TWO MANY VMANY MRF2 MRF3
0.25 4.53 4.75 4.96 5.91 9.78 9.86 7.74

(0.10) (0.11) (0.09) (0.13) (0.09) (0.14) (0.12)
0.50 0.80 1.02 1.30 2.41 7.11 7.85 4.92

(0.03) (0.04) (0.04) (0.07) (0.10) (0.09) (0.09)
0.75 0.55 1.00 1.11 2.48 8.04 8.44 5.13

(0.04) (0.07) (0.05) (0.09) (0.19) (0.10) (0.07)
1.00 0.63 1.01 1.20 2.53 9.56 9.01 5.48

(0.04) (0.05) (0.07) (0.09) (0.18) (0.09) (0.08)
1.25 0.75 1.22 1.44 3.19 11.60 9.83 6.16

(0.05) (0.08) (0.10) (0.10) (0.25) (0.12) (0.12)
1.50 0.70 1.27 1.78 3.61 13.19 10.40 6.77

(0.03) (0.08) (0.12) (0.12) (0.28) (0.13) (0.12)

TABLE III

Average percentage of misclassified pixels using model III
Standard errors in brackets. Optimal reconstruction is bold faced

-2 = 0.5

13 BCIR CROSS TWO MANY VMANY MRF2 MRF3
0.25 6.31 6.54 6.71 7.58 11.02 11.12 9.20

(0.12) (0.13) (0.12) (0.13) (0.09) (0.14) (0.12)
0.50 1.18 1.38 1.59 2.78 7.24 7.98 5.22

(0.05) (0.05) (0.06) (0.07) (0.10) (0.09) (0.09)
0.75 0.60 1.01 1.08 2.38 7.37 8.01 4.98

• 0 (0.04) (0.07) (0.05) (0.09) (0.15) (0.11) (0.10).4. 1.00 0.64 0.98 0.97 2.27 8.26 8.63 5.20

* (0.04) (0.06) (0.06) (0.08) (0.19) (0.08) (0.09)
1.25 7.11 1.08 1.25 2.Y 1 9.76 9.25 5.72

(0.04) (0.06) (0.09) (0.08) (0.25) (0.11) (0.09)
1.50 6.87 1.08 1.44 3.13 11.24 9.72 6.22

(0.04) (0.08) (0.09) (0.11) (0.30) (0.12) (0.11)

In Tables IV to VII we present the analogous results for black and white

pixels. These results are similar to those in Tables II and III. Notice that the

'optimal' value of 13 is larger for white pixels than for black in the majority of
scenes. This may be due to the higher proportion of boundary pixels for black



features in most scenes ( see Table IX).

TABLE IV

Average percentage of black pixels classified white using model II
Standard errors in brackets.

Optimal reconstruction is bold faced

2--0.5

13 BCIR CROSS TWO MANY VMANY MRF2 MRF3
0.25 4.43 7.72 7.59 11.91 16.16 9.51 7.70

(0.15) (0.34) (0.28) (0.39) (0.33) (0.20) (0.18)
0.50 0.77 4.30 4.87 12.13 18.46 7.87 4.98

'ii (0.06) (0.41) (0.21) (0.44) (0.48) (0.16) (0.12)
0.75 0.42 5.36 5.33 14.80 24.96 8.11 5.04

(0.06) (0.37) (0.33) (0.67) (0.54) (0.17) (0.14)
1.00 0.37 5.21 5.94 16.98 32.37 8.86 5.36

(0.05) (0.34) (0.58) (0.65) (0.74) (0.16) (0.20)
1.25 0.30 7.37 6.70 22.43 39.91 9.05 5.98

(0.03) (0.72) (0.41) (1.07) (0.81) (0.28) (0.27)
1.50 0.36 7.23 8.12 25.37 46.71 10.34 6.70

.4 (0.04) (0.81) (0.84) (0.92) (1.05) (0.30) (0.16)

However the accurate estimation of the 'optimal' value of 1 is difficult in many

...-. cases as the plot of the average misclassification rate against 13 (see figs 8 to

14) is J-shaped in the area of interest.

TABLE V

Average percentage of black pixels classified white using model I
standard errors in brackets

Optimal reconstruction is bold faced

02=0.5

3 BC1R CROSS TWO MANY VMANY MRF2 MRF3
0.25 6.27 9.37 9.12 12.75 16.42 10.91 9.13

(0.12) (0.33) (0.34) (0.34) (0.25) (0.20) (0.19)
0.50 1.16 4.52 4.81 11.30 16.88 8.08 5.33

(0.06) (0.37) (0.19) (0.37) (0.36) (0.21) (0.16)
0.75 0.49 5.11 4.64 13.05 21.26 7.74 4.98

(0.06) (0.40) (0.27) (0.60) (0.46) (0.14) (0.14)
1.00 0.40 4.82 4.48 14.55 26.60 8.47 5.25

(0.06) (0.41) (0.39) (0.56) (0.70) (0.16) (0.20)
1.25 0.35 6.35 5.63 18.96 32.26 8.62 5.48

(0.04) (0.59) (0.39) (0.86) (0.87) (0.18) (0.22)
1.50 0.37 6.05 6.05 21.36 39.30 9.67 6.19

(0.04) (0.63) (0.58) (0.87) (1.03) (0.23) (0.17)

A*. h4.



TABLE VI

* Average percentage of white pixels classified black using model II
Standard errors in brackets

Optimal reconstruction is bold faced

a2-0.5

f3 BCIR CROSS TWO MANY VMANY MRF2 MRF3
0.25 4.61 4.45 4.60 5.08 7.58 10.22 7.79

(0.11) (0.12) (0.10) (0.13) (0.16) (0.24) (0.19)
0.50 0.83 0.69 0.80 1.07 3.21 7.83 4.85

(0.05) (0.04) (0.05) (0.05) (0.12) (0.13) (0.19)
,wA 0.75 0.64 0.55 0.53 0.77 2.22 8.79 5.23

(0.04) (0.06) (0.06) (0.05) (0.11) (0.16) (0.15)
1.00 0.82 0.58 0.54 0.53 1.71 9.16 5.60

(0.07) (0.05) (0.05) (0.05) (0.10) (0.18) (0.14)
1.25 1.08 0.60 0.71 0.53 1.85 10.63 6.35

" (0.10) (0.07) (0.10) (0.05) (0.18) (0.28) (0.25)
1.50 0.95 0.66 0.90 0.60 1.66 10.46 6.85

(0.07) (0.05) (0.08) (0.05) (0.10) (0.27) (0.16)

TABLE VII

Average percentage of white pixels classified black using model III
Standard errors in brackets

Optimal reconstruction in bold face
J. .. 02=0.5

.. BCIR CROSS TWO MANY VMANY MRF2 MRF3
0.25 6.35 6.25 6.38 6.87 9.17 11.33 9.28

(0.14) (0.13) (0.12) (0.14) (0.15) (0.25) (0.18)
0.50 1.20 1.06 1.14 1.60 3.93 7.87 5.10

(0.06) (0.05) (0.06) (0.05) (0.14) (0.15) (0.18)
0.75 0.68 0.59 0.59 0.91 2.60 8.28 4.97

(0.05) (0.06) (0.05) (0.05) (0.08) (0.20) (0.14)
1.00 0.82 0.58 0.49 0.57 1.95 8.80 5.14

(0.07) (0.05) (0.05) (0.04) (0.08) (0.13) (0.10)
1.25 0.99 0.55 0.64 0.57 2.02 9.89 5.96

(0.08) (0.06) (0.08) (0.07) (0.17) (0.22) (0.20)
1.50 0.93 0.58 0.80 0.60 1.59 9.78 6.25

(0.07) (0.05) (0.08) (0.05) (0.10) (0.26) (0.17)

The number of misclassified pixels is a crude image summary which takes

no account of the spatial characteristics of the scene. To gain further insight

* into the differences between model Hl and III we use an image summary which

'N counts the number of misclassified pixels close to the true boundary between

black and white areas. A similar procedure was suggested by Owen, in the dis-

cussion of Ripley (1986).

3.-..
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* TABLE VIII

6: Average percentage of misclassified boundary pixels
for MRF3. Standard errors in brackets
The optimal reconstruction in bold face

(There are 2712 boundary pixels in MRF3)

- 0a_0.5

Model 0.25 0.50 0.75 1.0 1.25 1.5

II Boundary 16.74 16.02 17.35 18.33 20.30 21.42
(0.23) (0.17) (0.21) (0.22) (0.25)

II All 7.74 4.92 5.13 5.48 6.16 6.77
(0.12) (0.09) (0.07) (0.08) (0.12)

III Boundary 17.27 15.98 16.78 17.51 19.11 20.19
(0.25) (0.18) (0.28) (0.25) (0.20)

I 1I All 9.20 5.22 4.98 5.20 5.72 6.22
(0.12) (0.09) (0.10) (0.09) (0.09)

We reconstruct MRF3 using models II and III with o02=0.5. The average

percentage of misclassified boundary pixels are displayed in Table VIII. In this

table we call a pixels with at least one neighbour of a different colour (in the

true scene) a boundary pixel. It is immediately apparent that the majority of

misclassified pixels lie near colour boundaries when moderate values of 0 are

used. When MRF3 is reconstructed using model III and -0.5 there are

approximately 433 misclassified boundary pixels and 89 elsewhere. There is

some evidence that the optimal reconstruction of boundary pixels require a

smaller value of 03 than the scene as a whole. This is also apparent from the

p:. example described by Owen in the discussion of Ripley (1986). There appears

to be little observable difference between Model II and III using this image

summary.

5. THE CHOICE OF THE SMOOTHING PARAMETER.

In this section we attempt to identify features of the underlying scene and
-;:
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error distribution which influence the choice of P3 in (2.6). We restrict attention
to model II. First we examine the relationship between the 'optimal' value of 1

and the signal variance 0" . In figures 8 to 14 we plot the average percentage

of misclassified pixels against 13 for various values of y2. Notice that the value Figs 8-15

of 1D which gives the smallest average misclassification rate is approximately here
V." the same for all values of ;2 considered. The results for VMANY (fig 12)

behave atypically. In this respect the ICM algorithm differs from simple linear
pregularisation techniques where the 'optimal' smoothing parameter is typically

proportional to the noise to signal ratio , Hall & Titterington (1986, p 336). The

effect of grossly misspecifying o2 can be large as the example given in figure 7

of Ripley (1986) shows. However the relative stability of the misclassification

rate to changes in 13 chose to its 'optimal' value suggests that ICM is robust to

modest misspecification of a2. We see from figs 8 to 14 that worthwhile gains

can be achieved using the 'optimal' value of 13.
In the remainder of this section we examine the relationship between the

'optimal' value of 13 and certain features of the underlying scene. First we con-

sider the relationship between the 'optimal' value of 03 and its maximum

pseudo-likelihood estimate. In this approach we calculate the value of 13 which

maximises the conditional likelihood

p m n

fIIP(xi1 IF(i), 3 ). (5.1)
i=lj=I

From Table IX we see that the pseudo-likelihood estimates of 13 using model II

(1,ik) are usually greater that the value of 13 giving the smallest average,-. misclassification rate. This behaviour may be due to the fact that the majority

of scenes considered are untypical realisations from a MRF. For the scenes

constructed by sampling from a conditional MRF a different pattern emerges.
V.''.,, In this case the 'optimal' 13 is precisely the value of 13 used to construct the

underlying scene (see Tables 11,111 and IX), provided we use the correct
- model in our reconstruction. The pseudo-likelihood approach has the

-:'. - .-. ...



disadvantage of indicating an infinite value of 03 for certain pixel configurations.

Next we introduce two statistics which measure the smoothness of the

underlying scene.

DEFINITION : TWO IMAGE SUMMARIES
1,t

B : Total boundary length between black and white pixels

( excluding the window).

QT, : The number of pixels which have at least one

neighbour of a different colour using an i th order

neighbourhood.

the total arc length of its contour plot at certain levels. Applying this measure
te tat Swi fe (17)msrs thermothns'oaado ucinb

to binary random functions gives the statistic B. The image summary QT, can

be written as the difference between the statistics e, and d, defined in Ripley

(1986, p 94) where pixels adjacent to the window are neglected. See Ripley

(1977) for a discussion of image summaries and their application. Notice that

QT 2= 2B for many scenes ( see Table IX for several examples ). These statis-

tics differ in their treatment of 'small' features. An isolated black pixel will

contribute 4 to the total boundary length and 9 to QT2"

'There is strong evidence (see Table IX) to suggest that the misclassification

rate for a feature is strongly influenced by the percentage of boundary pixels (

as measured by QT2 or boundary length, B ). This effect is indicated by the

- *difference in the average percentage of misclassified black and white pixels.

The scene BCIR appears to behave in an anomalous way. There is some evi-

dence ( see Table IX) that the value of P giving the lowest average proportion

of misclassified pixels decreases as the proportion of boundary pixels ( as



measured by QT, or total boundary length) increases. The value of f0 giving the

smallest average percentage of misclassified pixels gives the strongest evidence

for this relationship. There appears to be little difference in the descriptive abil-

ity of QT2 and B. In the scenes considered we see that the pseudo-likelihood

estimates of 3 are not closely related to the smoothness measures described

above.

TABLE IX

Smallest average percentage of misclassified pixels using model 11
and the 'optimal' value of 3 vs smoothness measures.

(* pseudo likelihood estimate using model III)

a2 = 0.5

Picture black white all QT, B

BCIR 0.30 0.64 0.55

P 1.25 0.75 0.75 344 172 1.85
pixels 4300 5700 10000

a,.- CROSS 4.30 0.55 1.00

A 0.50 0.75 0.75 516 260 2.09
pixels 926 9074 10000

TWO 4.87 0.53 1.11
P 0.5 0.75 0.75 480 240 2.12

pixels 1225 8775 10000

MANY 11.91 0.53 2.41
P 0.25 1.25 0.5 1248 624 2.62

pixels 1216 8784 10000

, VMANY 16.16 1.71 7.11
0 f3 0.25 1.0 0.5 3776 1888 1.98

pixels 2560 7440
MRF2 7.87 7.83 7.85 4109 2324 0.50
3 0.5 0.5 0.5

pixels 5065 4935

MRF3 4.98 4.85 4.92 2712 1453 0.63
pixels 0.5 0.5 0.5 (*0.75)
pixels 5065 4935

* A useful indication of the effectiveness of a reconstruction technique can be

obtained by considering its properties in reconstructing a one colour scene. In



Table X we display the average percentage of niiz;,Iassified pixels when a one

colour scene is reconstructed using model II. For values of 03 less that 0.4

appreciable errors are incurred. So for scenes with large monochrome areas we

should choose P 2 0.4.

TABLE X

Average percentage of misclassified pixels for a one colour scene
, (using model II) for various values of 0 2

Standard error in brackets

0.2 0.25 0.3 0.35 0.4

a 2 = 0.25 4.98 3.35 2.15 1.30 0.80
(0.03) (0.03) (0.02) (0.02) (0.01)

o2 = 0.50 6.6 3.93 2.26 1.31 0.75
(0.06) (0.05) (0.03) (0.03) (0.02)

Y2 = 0.75 7.14 4.06 2.34 1.40 0.82
(0.06) (0.06) (0.05) (0.04) (0.03)

02 = 1.0 7.24 4.25 2.61 1.59 1.06
(0.08) (0.07) (0.06) (0.05) (0.05)

a 2 = 1.25 7.49 4.46 2.68 1.87 1.31
(0.08) (0.09) (0.07) (0.07) (0.06)

Y2 = 1.50 7.68 4.52 3.03 2.11 1.52
(0.10) (0.09) (0.08) (0.08) (0.05)

To illustrate this point further consider the percentage of misclassified pix-

els for BCIR with e--0.25. Recall that the majority of pixels in BCIR are far

from the colour boundaries. In Figure XI we compare the percentage of

misclassified pixels using ICM with the percentage of misclassified pixels for a

one colour scene using the same model.

S



TABLE XI

A comparison of the average percentage of misclassified pixels of BCIR
and a monochrome scene when reconstructed using model II
Standard errors in brackets ( 60 realisations for mono scene)

Optimal reconstruction is bold faced

02=0.25

0.25 0.50 0.75 1.00 1.25 1.50

BCIR 4.53 0.80 0.55 0.65 0.75 0.70
(0.10) (0.03) (0.04) (0.04) (0.04) (0.03)

Monochrome 3.34 0.27 0.02 <0.02 <0.02 <0.02
(0.02) (0.01) (0.003) (<0.001) (<0.001) (<0.001)

The optimal reconstruction is obtained with -0.75, where the percentage of

misclassified pixels is 0.55. The contribution of pixels far from the colour

boundary is approximately 0.02%. These result suggest that the errors incurred

• .. during the reconstruction of scenes like BCIR occur near the colour boundaries

.4 for moderate values of 1 (see Table VIII).

Consider a black pixel which has k white neighbours when it is updated.

The probability of misclassifying this pixel during the current iteration can be

.- calculated from (2.6). In Table XII we display this probability for model II with

independent normally distributed noise (02--0.5).

TABLE XII

The probability that a black pixel is classified white
'i,..at a particular iteration when it has k white neighbours

o2=0.5~13

k 0.25 0.50 1.0
8 0.98 1.00 1.00
7 0.92 1.00 1.00
6 0.76 0.98 1.00

.- 5 0.50 0.76 0.98

• 4 0.16 0.16 0.16

3 0.08 0.02 0.00
2 0.02 0.00 0.00
1 0.00 0.00 0.00
0 0.00 0.00 0.00

These calzulations strongly suggest that model II behaves like a simple majority

-,- .
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vote when P--l.0. Table XI can be used to estimate the 'vulnerability' of

image features for various values of 13. As an example consider the comer pix-

els (k=5) of a black rectangle. This configuration is highly vulnerable when

13>0.5. As ICM is an iterative procedure this calculation will not give the pro-

bability of misclassifying a given pixel. However calculations of this type are

useful in visualising the effect of ICM with various values of 13 and neighbour-

hood system. Using this approach to choose 13 is analogous to a method sug-

gested by Ripley (1986) with the important addition, that information is

included about the noise distribution.

6. SOME DISTRIBUTIONAL PROPERTIES OF ICM

There appears to be no work in the literature on the distributional properties

of the 1CM estimator of (x..) or any functional of interest. The only relevant

work is due to Geman and Geman (1984), who describe how to sample from

the posterior distribution of (xij). In this section we examine the variance of the

percentage of misclassified pixels. The number of misclassified pixels can be

regarded as a functional of the scene formed by a comparison between (x5j) and

its reconstruction. In Table XIII we display the average percentage of

misclassified pixels with its standard deviation in brackets for o 2=0.5 and

model II. The figures for the optimal reconstruction are given in bold face.

Recall that ICM is a 'local' procedure. This suggests a poisson approximation

* for the number of misclassified pixels. The coefficient of variation of the per-

centage of misclassified pixels at the 'optimal' value of 13 appears to decrease

as the misclassification rate (and complexity) increases. This is not consistent

* Iwith a poisson assumption. In particular we see from Table VIII that

misclassified pixels cluster near colour boundaries. The skewness (b0) and

kurtosis (b2) of the percentage of misclassified pixels were calculated and sug-

* gest a symmetric distribution with b2 between two and three. These are

j?
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tentative conclusions as the number of realisations used in this study is small.

TABLE XIfI

The standard deviation ( in brackets) and the average percentage
of misclassified pixels using model II

The optimal reconstruction is bold faced

0F2=0.5

' BCIR CROSS TWO MANY VMANY MRF2 MRF3

0.25 4.53 4.75 4.96 5.91 9.78 9.86 7.74
* (0.40) (0.42) (0.33) (0.49) (0.34) (0.54) (0.48)

0.50 0.80 1.02 1.30 2.41 7.11 7.85 4.92
(0.10) (0.16) (0.17) (0.29) (0.39) (0.35) (0.33)

0.75 0.55 1.00 1.11 2.48 8.04 8.44 5.13
' 4 (0.14) (0.26) (0.18) (0.34) (0.73) (0.39) (0.25)

1.00 0.63 1.01 1.20 2.53 9.56 9.01 5.48
(0.16) (0.20) (0.25) (0.35) (0.71) (0.35) (0.32)

1.25 0.75 1.22 1.44 3.19 11.60 9.83 6.16
(0.21) (0.33) (0.38) (0.41) (0.96) (0.45) (0.47)

1.50 0.70 1.27 1.78, 3.61 13.19 10.40 6.77
(0.12) (0.33) (0.46) (0.46) (1.10) (0.51) (0.45)

7. COMPUTATIONAL DETAILS

Pseudo-random deviates distributed uniformly on [0,11 were generated using

Wichmann & Hill (1982). We take ix=27631 , iy=5627 and iz=10234.

£Pseudo-normal deviates with zero mean and unit variance were constructed

* using the Box-Muller transformation. The first step in our algorithm is to deter-

mine the maximum likelihood estimate of (xi). This colouring is used as the
initial state ( iteration zero ) of our algorithm. Each pixel is visited in raster

* scan order and the colour of the (i ,j)th pixel is updated using (2.6). The cpu

time taken by our algorithm is proportional to the size of the neighbourhood

system used, the number of pixels and the size of 0"2.

* In Table XIV we display the average number of pixels whose colour

changes during the kth iteration when MRF3 is reconstructed using model II.

.
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.The average percentage of misclassified pixels is also presented. In this table

one iteration is equivalent to a complete sweep of the scene ( 104 pixel visits ).

Notice that the majority of changes occur during the first iteration (more

changes are made as P increases). Typically only one or two pixels change

colour during later iterations. This pattern is repeated for each combination of

scene, 02 and model considered.

TABLE XIV

Average number of changes per iteration and percentage of
misclassified pixels for MRF3 (model I)

Standard errors in brackets

0y2=0.5

3=0.25 13=0.50 = 0
k changes % miscl'd changes % miscl'd changes %miscl'd

1 1587 9.84 2117 6.47 2346 6.58
* (8) (0.13) (12) (0.09) (10) (0.08)

2 206 8.18 189 5.31 153 5.93
(5) (0.12) (4) (0.08) (3) (0.08)

3 42 7.87 44 5.07 50.0 5.70
(2) (0.12) (3) (0.08) (2) (0.08)

4 12 7.78 16 4.98 21 5.58
(1) (0.12) (1) (0.08) (1) (0.08)

5 3 7.75 6 4.95 10 5.52
(1) (0.12) (1) (0.08) (1) (0.08)

6 1 7.74 3 4.93 5 5.50
(0) (0.12) (0.6) (0.08) (1) (0.08)

12 0 7.74 0 4.92 0 5.48
(0.12) (0.09) (0.08)

This suggests the following modification of the basic algorithm:

Pixels are only updated when they are flagged as 'active'. The pixel (ij) is

V. 'active' when the colour of at least one of neighbours has changed during the

current iteration. Pixels are visited in raster order. When a pixel's colour

M



changes its neighbours become active. Pixels are de-activated after they are

updated.

Using this algorithm we would visit ( see Table XIV) less than nine hundred

pixels on average ( using a second order neighbourhood ) during the third itera-

tion. We expect the modified algorithm to converge after approximately 3

iterations in general. To obtain further gains in efficiency we might 'switch

off' pixels whose colour has a low probability of being changed during the

current iteration,see Ripley (1986). For example a pixel which has no neigh-

bours of a different colour can be de-activated.

8. CONCLUSIONS

On the basis of the scenes and models considered in this study we suggest

the following rules of thumb for prospective users of ICM.

1. Should I use ICM ?

Our empirical results suggest that the misclassification rate of a feature

increases with the proportion of boundary pixels (see Table IX and compare the

misclassification rate for black and white pixels). Typically small feature will

be 'erased'. If the aim of an analysis is to find small features then a technique

S based on masks will probably be preferable to ICM. However it is apparent

from Table I that substantial gains over the maximum likelihood estimate, can

be achieved by smoothing.

2. Which model should I use?

* We suggest that model III should be used in the absence of specific

knowledge about the uncorrupted scene. If we know that the underlying scene



is non-homogeneous we can exploit this by using a hierarchical model, see

Derin & Elliot (1987) or Woods,Dravida & Mediavilla (1987).

3. What value of 3 should I use?

This is a difficult question to answer in the absence of any information

about the underlying scene. The examples considered in this paper suggest that

useful gains can be achieved using the 'optimal' value of 3 rather than a port-

manteau value of, say 3=1.5. We distinguish between two cases. In the first

we assume that the underlying scene is a 'typical' realisation from a MRF.

Then a good approximation to the 'optimal' reconstruction is obtained using the

neighbourhood system and value of P specified by the underlying MRF. When

the underlying scene cannot be regarded as a 'typical' realisation from a MRF

* we suggest the used of smoothness measures such as the total boundary length

in the choice of the 'optimal' value of 03. In both cases we see that the

'optimal' value of 13 does not depend on a 2 . From figs 8 to 14 we see that

there is some leeway in choosing the 'optimal' value of 13.

4. Is the ICM estimate difficult to calculate?

From the discussions in section 7 we see that a single reconstruction of a

binary 104 pixel scene can be computed simply. The calculations appear well

* suited to parallel implementation. The scene VMANY with a 2=0.5 was recon-

structed in around 39 seconds (using model II with 13=0.5) on a SUN-3 Work

Station with a floating point accelerator.
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CAPTIONS FOR FIGURES 1 TO 15

FIGURE 1 BCIR : Circle centred at (30,30) with radius 40. The origin is at
the bottom left hand comer of the window which has dimensions" (O,lO0)x(O, lO0).

FIGURE 2 CROSS Two rectangles with comers at

{ (10,40),(60,20),(70,30),(20,50) } and { (25,20),(30,15),(55,50),(50,55) 1

FIGURE 3 TWO : Two rectangles with comers at f(10,40) , (60,40)(60,50), (10,50)) and ((20,55), (65,55), (65,60), (20,60))

FIGURE 4 MANY : Eight circles of radius 6 centred at, (25,20) , (45,20) ,
(65,20) , (80,20) , (25,80) , (45,80) , (65,80) , (85,80) and ten circles of radius
3 centred at (20,40) , (35,40) , (50,40) , (65,40) , (80,40) , (20,60) , (35,60)
(50,60) , (65,60) , (80,60).

FIGURE 5 VMANY : Eighty circles with radius 3 and centres at
(5+10j,1Ok-7) for j=l ,...,8 and k=l .... 10.

FIGURE 6 MRF2 : A synthetic realisation from the MRF specified in
MODEL IH with 3=0.5. This scene was constructed using an algorithm given in

*Cross and Jain (1983).

FIGURE 7 MRF3 A synthetic realisation from the MRF specified in Model
III with 3=0.75. This scene was constructed using the algorithm given in Cross
and Jain (1983).

FIGURE 8 A plot of the average percentage of misclassified pixels against (3
-S'" and o2 when BCIR is reconstructed using MODEL I

FIGURE 9 A plot of the average percentage of misclassified pixels against (3
and a when CROSS is reconstructed using MODEL II

FIGURE 10 A plot of the average percentage of misclassified pixels against (3
and a when TWO is reconstructed using MODEL II

FIGURE 11 A plot of the average percentage of misclassified pixels against (3
and ; when MANY is reconstructed using MODEL II

*-- FIGURE 12 A plot of the average percentage of misclassified pixels against (3
and a when VMANY is reconstructed using MODEL II

FIGURE 13 A plot of the average percentage of misclassified pixels against (3
and Y when MRF2 is reconstructed using MODEL II
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~FIGURE 14 A plot of the average percentage of misclassified pixels against 13
and a when MRF3 is reconstructed using MODEL II

I FIGURE 15 A plot of the average percentage of misclassified pixels against 3

. for model II and (1/1.117)13 for model III
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